Структура научного профиля (портфолио) потенциальных научных руководителей участников трека аспирантуры Международной олимпиады Ассоциации «Глобальные университеты» для абитуриентов магистратуры и аспирантуры.

**	m v
Университет	Томский политехнический университет
Уровень владения английским	B2/C1
языком	
Направление подготовки и	2.6. Химические технологии, науки о материалах,
профиль образовательной	металлургия
программы, на которую будет	2.6.1. Металловедение и термическая обработка металлов
приниматься аспирант	и сплавов
Перечень исследовательских	Руководство
проектов потенциального	1. Изготовление высокопрочных отливок из свинцово-
научного руководителя	оловянистых бронз
(участие/руководство)	2. Повышение эффективности накопления энергии в
() incline, pythologolize)	аккумуляторах электромобилей на основе гибридного
	нанокомпозита максена (МХепе)
	3. Разработка технологии печати методом SLM из
	нержавеющих сталей.
	4. Получение градиентных центробежно-литых бронзовых
	заготовок путем введения в кристаллизующийся расплав
	дисперсных частиц карбидов
	Участие
	1. Теоретическое и экспериментальное моделирование
	физико-химических процессов при лазерном спекании
	ультрадисперсных порошков металлов на подложке
	2. Выбор рациональных конструкторско-технологических
	решений при производстве технологической оснастки и
	изделий из высокотехнологичных композиционных
	материалов
	3. Исследование структуры и свойств коррозионностойких
	покрытий системы «титан-тантал-ниобий»,
	сформированных методом высокоэнергетического
	воздействия электронным пучком в вакууме и воздушной
Попольно	атмосфере
Перечень предлагаемых	1. Субтрактивная обработка заготовок изготовленных
соискателям тем для	методом электронно-лучевой печати проволокой из
исследовательской работы	нержавеющей стали
	2. Субтрактивная обработка заготовок изготовленных
	методом электронно-лучевой печати проволокой из
	титановых сплавов
	3. Субтрактивная обработка заготовок изготовленных
	методом электронно-дуговой 3Д печати проволокой из
	нержавеющей стали
	4. Субтрактивная обработка заготовок изготовленных
	методом электронно-дуговой 3Д печати проволокой из
	титановых сплавов
	5. Сравнительный анализ структуры и свойств деталей из нержавеющей стали получаемых методами EBW и WAAM.
	6. Сравнительный анализ структуры и свойств деталей из
	титановых сплавов получаемых методами EBW и WAAM.
	7. Сравнительный анализ структуры и свойств деталей из
	никелевых сплавов получаемых методами EBW и WAAM.
	J western are to House 11 11 1111

- 8. Модифицирование алюминиевых сплавов (силуминов) ультрадисперсными порошками оксидов металлов.
- 9. Модифицирование алюминиевых сплавов (силуминов) ультрадисперсными порошками тугоплавких металлов.

Техника и технологии 2.05. Технологии материалов, Металлургия и металловедение

Научные интересы

Аддитивные технологии, порошки для аддитивных технологий, 3Д печать металлами и сплавами. Литье сплавов цветных металлов. Компьютерный анализ микроструктур.

Особенности исследования (при наличии)

Новая область исследования, новое разработанное оборудование для проведения экспериментальных работ

Требования потенциального научного руководителя Хорошие знания в области материаловедения металлов и металлических сплавов.

Научный руководитель:

Мартюшев Никита Владимирович,

кандидат наук (Томский политехнический университет)

Общее количество публикаций за последние 5 лет: 77

Основные публикации потенциального научного руководителя

- 1. Martyushev, N.V.; Kozlov, V.N.; Qi, M.; Tynchenko, V.S.; Kononenko, R.V.; Konyukhov, V.Y.; Valuev, D.V. Production of Workpieces from Martensitic Stainless Steel Using Electron-Beam Surfacing and Investigation of Cutting Forces When Milling Workpieces. Materials 2023, 16, 4529. doi: 10.3390/ma16134529
- 2. Yelemessov, K.; Baskanbayeva, D.; Martyushev, N.V.; Skeeba, V.Y.; Gozbenko, V.E.; Karlina, A.I. Change in the Properties of Rail Steels during Operation and Reutilization of Rails. Metals 2023, 13, 1043. doi: 10.3390/met13061043
- 3. Martyushev, N.V.; Bublik, D.A.; Kukartsev, V.V.; Tynchenko, V.S.; Klyuev, R.V.; Tynchenko, Y.A.; Karlina, Y.I. Provision of Rational Parameters for the Turning Mode of Small-Sized Parts Made of the 29 NK Alloy and Beryllium Bronze for Subsequent Thermal Pulse Deburring. Materials 2023, 16, 3490. doi: 10.3390/ma16093490
- 4. Strateichuk, D.M.; Martyushev, N.V.; Klyuev, R.V.; Gladkikh, V.A.; Kukartsev, V.V.; Tynchenko, Y.A.; Karlina, A.I. Morphological Features of Polycrystalline CdS1-xSex Films Obtained by Screen-Printing Method. Crystals 2023, 13, 825. doi: 10.3390/cryst13050825
- 5. Zykova, A.; Martyushev, N.; Skeeba, V.; Zadkov, D.; Kuzkin, A. Influence of W Addition on Microstructure and Mechanical Properties of Al-12%Si Alloys. Materials 2019, 12, 981. doi: 10.3390/ma12060981

Pезультаты интеллектуальной деятельности (при наличии) 1. Gutarevich, V.O.; Martyushev, N.V.; Klyuev, R.V.; Kukartsev, V.A.; Kukartsev, V.V.; Iushkova, L.V.; Korpacheva, L.N. Reducing Oscillations in Suspension of Mine Monorail Track. Appl. Sci. 2023, 13, 4671. doi: 10.3390/app13084671

- 2. Martyushev, N.V.; Bublik, D.A.; Kukartsev, V.V.; Tynchenko, V.S.; Klyuev, R.V.; Tynchenko, Y.A.; Karlina, Y.I. Provision of Rational Parameters for the Turning Mode of Small-Sized Parts Made of the 29 NK Alloy and Beryllium Bronze for Subsequent Thermal Pulse Deburring. Materials 2023, 16, 3490. doi: 10.3390/ma16093490
- 3. Yelemessov, K.; Sabirova, L.B.; Martyushev, N.V.; Malozyomov, B.V.; Bakhmagambetova, G.B.; Atanova, O.V. Modeling and Model Verification of the Stress-Strain State of Reinforced Polymer Concrete. Materials 2023, 16, 3494. doi: 10.3390/ma16093494
- 4. Strateichuk, D.M.; Martyushev, N.V.; Klyuev, R.V.; Gladkikh, V.A.; Kukartsev, V.V.; Tynchenko, Y.A.; Karlina, A.I. Morphological Features of Polycrystalline CdS1-xSex Films Obtained by Screen-Printing Method. Crystals 2023, 13, 825. doi: 10.3390/cryst13050825
- 5. Kondrakhin, V.P.; Martyushev, N.V.; Klyuev, R.V.; Sorokova, S.N.; Efremenkov, E.A.; Valuev, D.V.; Mengxu, Q. Mathematical Modeling and Multi-Criteria Optimization of Design Parameters for the Gyratory Crusher. Mathematics 2023, 11, 2345. doi: 10.3390/math11102345
- 6. Malozyomov, B.V.; Martyushev, N.V.; Sorokova, S.N.; Efremenkov, E.A.; Qi, M. Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter. Mathematics 2023, 11, 2394. doi: 10.3390/math11102394
- 7. Yelemessov, K.; Baskanbayeva, D.; Martyushev, N.V.; Skeeba, V.Y.; Gozbenko, V.E.; Karlina, A.I. Change in the Properties of Rail Steels during Operation and Reutilization of Rails. Metals 2023, 13, 1043. doi: 10.3390/met13061043
- 8. Martyushev, N.V.; Malozyomov, B.V.; Sorokova, S.N.; Efremenkov, E.A.; Qi, M. Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles. Mathematics 2023, 11, 2586. doi: 10.3390/math11112586