Структура научного профиля (портфолио) потенциальных научных руководителей участников трека аспирантуры Международной олимпиады Ассоциации «Глобальные университеты» для абитуриентов магистратуры и аспирантуры.

На русском языке:

· · · · · · · · · · · · · · · · · · ·	университет
	Свободное владение, C1- advanced
языком	свообдное влидение, ст инчинеен
	1.3.8. Физика конденсированного состояния (физические науки)
_ · · · · · · · · · · · · · · · · · · ·	1.4.4. Физическая химия (химические науки)
1 1	2.2.12. Приборы, системы и изделия медицинского назначения
	2.2 Электроника, фотоника, приборостроение и связь)
	2.6.6. Нанотехнологии и наноматериалы (Химические
	гехнологии, науки о материалах, металлургия)
	2.6.14. Технология силикатных и тугоплавких неметаллических
	материалов (Химические технологии, науки о материалах,
	металлургия)
Перечень исследовательских У	Участие:
проектов потенциального -	Российский научный фонд. Проект «Исследование способов
научного руководителя у	улучшения пьезоэлектрических свойств биоматериалов на основе
(участие/руководство) п	полиоксиалканоатов для контролируемого воздействия на живые
K	клетки и ткани» (номер проекта №20-63-47096)
-	Мегагрант. Проект «Пьезо- и магнитоэлектрические
	биосовместимые материалы для решения задач современной
	биологии и медицины», номер соглашения 075-15-2021-588 от
	1.06.2021.
	Российский научный фонд. Проект «Разработка новых
	аддитивно-синтезированных сплавов с управляемым модулем
	Онга и наноструктурным биоактивным покрытием для
	вамещения костных дефектов» (номер проекта 22-43-04430)
	Руководство:
	Российский научный фонд. Проект «Получение и исследование
	гибридных биодеградируемых пьезоэлектрических скэффолдов с магнитными свойствами (номер проекта 22-13-20043)
Перечень предлагаемых	1. Магнитоэлектрические материалы в форме наночастиц
соискателям тем для	со структурой ядро-оболочка или электроформованных
исследовательской работы	скэффолдов.
песледовательской расоты	• •
	2. Аддитивные способы получения пьезополимерных
	скэффолдов и имплантатов для тканевой инженерии.
	3. Двумерные материалы на основе скрученных волокон
	для умной одежды, гибкой электроники
	4. Умная одежда на основе скрученных полимерных
	волокон.
	5. Микродвигатели с повышенной запасенной энергией для
	гибкой робототехники и электроники.
	6. Системы генерации и хранения энергии на основе
	скрученных композитных углеродсодержащих полимерных
	волокон.
	7. Искусственные мышцы на основе полимерных или
	углеродсодержащих материалов.
	8. Умные имплантаты на основе пьезополимерных
	материалов.
F	Естественные и точные науки 1.03. Физика и астрономия, Физика
	конденсированного состояния

Научный руководитель:

Сурменев Роман Анатольевич,

Доктор технических наук (Институт Физики прочности и материаловедения СО РАН, г. Томск), профессор.

Научные интересы:

Умные материалы, сегнетоэлектрики, пьезоматериалы, магнитоэлектрические материалы, имплантаты, тканевая инженерия, модифицирование поверхности, скэффолды, гибкая электроника, метаматериалы.

Особенности исследования:

Использование уникального оборудования, взаимодействие с российскими и зарубежными учеными и исследовательскими центрами, финансовая поддержка аспирантов.

Требования потенциального научного руководителя:

Свободное владение английским языком, наличие Q1/Q2 публикаций, мотивация на результат, умение работать в междисциплинарной команде, творческий подход.

Основные публикации потенциального научного руководителя.

Автор и соавтор более 180 публикаций, индексируемых в Скопусе (Сети Науки). Индекс Хирша 40 (Скопус), 38 (Сеть Науки).

- 1 R.A. Surmenev, M.A. Surmeneva. The influence of the flexoelectric effect on materials properties with the emphasis on photovoltaic and related applications: a review, Materials Today, Volume 67, July–August 2023, Pages 256-298, https://doi.org/10.1016/j.mtcomm.2023.106410
- 2 S. Kopyl, R. Surmenev, M. Surmeneva, Y. Fetisov, A. Kholkin, Magnetoelectric effect: principles and applications in biology and medicine A review, Materials Today Bio 2021, 100149, doi.org/10.1016/j.mtbio.2021.100149
- 3 R.A. Surmenev, R.V. Chernozem, I.O. Pariy, M.A. Surmeneva, A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications, Nano Energy 79 (2021) 105442, https://doi.org/10.1016/j.nanoen.2020.105442
- 4 R.V. Chernozem, I. Pariy, M.A. Surmeneva, V.V. Shvartsman, G. Plankaert, J. Verduijn, S. Ghysels, A. Abalymov, B.V. Parakhonskiy, A. Gonçalves, S. Mathur, F. Ronsse, D. Depla, D.C. Lupascu, D. Elewaut, R.A. Surmenev, A.G. Skirtach, Cell behavior changes and enzymatic biodegradation of hybrid electrospun poly(3-hydroxybutyrate)-based scaffolds with an enhanced piezoresponse after the addition of reduced graphene oxide, Adv. Healthcare Mater. 2022, 2201726, https://doi.org/10.1002/adhm.202201726
- 5 L.E. Shlapakova, M.A. Surmeneva, A.L. Kholkin, R.A. Surmenev, Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: a review, Materials Today Bio, Volume 25, April 2024, 100950, https://doi.org/10.1016/j.mtbio.2024.100950

Результаты интеллектуальной деятельности:

3 патента РФ на изобретение и 1 на полезную модель.